Binary Mixture of PCB126 and PCB118

3,3',4,4',5-pentachlorobiphenyl (PCB126)

2,3',4,4',5-pentachlorobiphenyl (PCB118)

PCB mixture study overview

- Not designed a priori as part of TEF Evaluation
- Originally a study of PCB118 alone
 - Doses: 0, 100, 220, 460, 1000, 4600 μg PCB118/kg
 - Based on TEF = 0.0001
- Rationale for study of PCB118
 - Highest exposure for mono-ortho class of PCBs

 - Has partial dioxin-like activity TEF = 0.0001
 Mixed P450 inducer Dioxin-like and Phenobarbital-like
 - Unclear if it should be included in TEF scheme

PCB118 study aborted at 13 weeks

- Excessive toxicity in top dose groups

 - Premature deaths in 4600 µg/kg group
 Body weight <90% of controls in 1000 ug/kg and 4600 ug/kg
 More severe than TCDD at 14 weeks at 100 ng/kg
 - Near maximal induction of CYP1A1 at all doses
- Uncertainty in TEF of 0.0001 for PCB118
 - Range of RPFs in rats: 0.00001 0.0007
 - Not unexpected that potency could be higher
- Study redesigned and restarted
 - 500 μg/kg selected as highest dose
 - Predicted effects to be similar to TCDD/PCB126 study

PCB 118 characterization

- Initial characterization of PCB 118; >98% pure

 - GC (system C)- three impurities; 0.2%, 0.8%, 0.5%
 Impurities >0.1% but <1% are reported, but not identified as per NTP policy.

 - Not PCDDs or PCDFs
 Synthesis route suggested impurities would not be PCBs of concern
- 13 week data prompted additional characterization
 - GC/MS (system E) : tetra-, hexa- and penta-CB

 - GC/MS (system F) characterization (% relative peak height)
 3,3'.44'-TCB (PCB 77) (0.2%) TEF = 0.0001
 2,3'.44'-5.5'+HCB (PCB 167) (0.5%) TEF = 0.00001
 3,3'.44'.5-PCB (PCB 126) (0.8%) TEF = 0.1
- Further characterization of PCB126 since high potency PCB
 - GC (system D) using method of standard addition
 PCB126 concentration = 0.622 +/- 0.061%

Essentially a binary PCB "mixture"

Bulk "PCB 118"	PCB 126	PCB 118	Group Name
(µg/kg)	(ng TEQ/kg)	(ng TEQ/kg)	(ng TEQ/kg)
10	6.2	1.0	7
30	18.7	3.0	22
100	62.2	9.9	72
300	186.6	29.6	216
500	311.0	49.3	360

- PCB 126 and PCB 118: >99% of dioxin like activity
- Top two doses higher than other TEF studies
 - Max dose in other studies was 100 ng TEQ/kg

Rationale for continuation of study

- PCB 126:153 studied to test for PCB interaction
 - Non ortho and di-ortho PCB interaction
- Humans co exposed to non-ortho and mono-ortho PCBs
 - Further evaluation of PCB interactions
 - PCB 126:118 ratio is environmentally relevant.

Study Details-PCB126:PCB118

• Female Harlan Sprague-Dawley rat only

• Oral gavage: 5 days per week

• Vehicle: corn oil:acetone (99:1) - 2.5 ml/kg • Doses: 0, 7, 22, 72, 216, 360 ng TEQ/kg

• Interim time points:

14 and 31 weeks:53 week: All dose groups All except 360 ng/kg

 Stop-study 360 ng TEQ/kg (cease at 30 wks)

Survival and body weight

- Effect on survival
 - Lower survival in 216 and 360 ng TEQ/kg groups and stop group
 - None in 216 and 360 ng TEQ/kg survived to end of study
- Decreased body weight gain
 - 72ng TEQ/kg and higher dose groups and "stop" group
 - Stop-group, near normal rate of gain after cessation of treatment
- Expected effects given higher doses
 - 100 ng TEQ/kg highest dose used in prior TEF studies
 - Not unexpected in top two dose groups given >100 ng TEQ/kg
 Not predicted based on effects seen in aborted 13 week study

Biochemical effects

- Increased cytochromes P450
 - Significantly increased at all doses examined at all time points
 - Liver CYP1A1 and CYP1A2
 - Liver CYP2B
 - Lung CYP1A2
- Alterations in thyroid hormones
 - Free and total T4 decreased
 - All time points, all doses 22 ng TEQ and higher

 - Total T4-all doses at 31 and 53 weeks
 T3 decreased: only at 31 weeks only in 360 ng TEQ/kg
 TSH increased: only at 31 weeks only in 216 and 360 ng TEQ/kg

Hepatic toxicity: lesion spectrum

- Increasing dose and time
 - Increasing spectrum of effects
 Increased severity
- Effects in 216 and 360 ng/kg
 - Shown in red
- 14 weeks
- Hepatocyte hypertrophy
- PigmentationMultinucleated hepatocytes
- Fatty change, diffuse"Toxic hepatopathy"

- 31 weeks

 - 31 weeks

 + Bile duct hyperplasia
 + Centrilobular fibrosis
 + Cholangiofibrosis
 + Nodular hyperplasia
 + Portal fibrosis

 + Oval cell hyperplasia
 + Focal cellular atteration
- 2 years

 - + Glandular structures
 + Necrosis
 + Bile duct cysts
 + Centrilobular degeneration
 + Metaplasia

Liver: Lowest affected doses (ng/kg)

Endpoint	14wk	31wk	53wk	2-year
CYP1 P450 induction	7	7	7	
Rel liver weight increase	7	7	72	
Hepatocyte BrdU labeling	NS	216	72	
Hepatocyte hypertrophy	72	22	72	7
Toxic hepatopathy	216	216	72	7
Altered hepatic foci		216	NS	7
Bile duct hyperplasia		216	216	72
Oval cell hyperplasia		216	216	22
Nodular hyperplasia		360	216	22
Cholangiofibrosis		NS	216	72
Hepatocellular adenoma				216
Cholangiocarcinoma				22

Liver: 2 year

	0	7	22	72	216	360	Stop
Animals per group	53	51	53	53	53	65	50
Adenoma	2* (5%)	1 (3%)	0 (0%)	4 (11%)	17* (56%)	5* (38%)	1 (5%)
Carcinoma	0	0	0	0	1	0	0
Cholangiocarcinomaª	0* (0%)	0 (0%)	5* (13%)	19* (48%)	28* (80%)	12* (69%)	19* (75%)
Hepatocholangioma	0*	0	0	1	1	1	1
Cholangioma	0	0	0	1	0	0	0

*P<0.05; aHistorical control incidence 0/371; poly-3 incidence shown in parentheses

Lung: 2 year

	0	7	22	72	216	360	Stop
Animals per group	53	51	53	53	53	66	50
Alveolar epithelium- metaplasia, bronchiolar	1*	14*	39*	46*	35*	8*	15*
Serosa, fibrosis	3*	0	0	1	16*	8*	1
Squamous metaplasia	0*	1	2	14*	16*	7*	8*
Cystic Keratinizing epithelioma (CKE) ^a	0* (0%)	0 (0%)	0 (0%)	20* (51%)	49* (98%)	41* (97%)	12* (43%)
Keratin Cysts	0	0	0	0	0	0	9*

*P<0.05 aHistorical control incidence; 0/371

Transplant studies

- Transplanted neoplasms from 216 ng TEQ/kg group

 - Moribund animals (days 672-709 on test)

 Moribund animals (days 672-709 on test)

 > 2mm fragments, 2-8 transplants per neoplasm

 Cholangiocarcinoma neoplasms from 7 rats 33 transplants

 CKE neoplasms from 5 rats 23 transplants
 - Athymic nude NCr mice or SCID mice
- Results

 - 3 months follow up
 Regression (30-43%) or no fragment remaining (48-60%)
- Appendix to be added to TR
 - Data interpretation placed in perspective with other transplant studies

Oral mucosa: 2 year

	0	7	22	72	216	360	Stop
Animals per group	53	51	53	53	53	66	50
Gingival squamous hyperplasia	11*	10	20*	24*	27*	18*	18*
Gingival squamous cell carcinoma ^a	1 (2%)	1 (3%)	2 (5%)	4 (11%)	0 (0%)	1 (10%)	1 (5%)

*P<0.05 ^a Historical control incidence; 3/211

Pancreas: 2 year

	0	7	22	72	216	360	Stop
Animals per group	53	51	53	53	53	65	50
Acinar cytoplasmic vacuolization	0*	1	8*	39*	49*	43*	41*
Chronic active inflammation	1	5	4	3	2	6*	5*
Arterial chronic active inflammation	0*	2	2	21*	14*	4*	10*
Acinar atrophy	1*	5	3	5	9*	8*	8*
Acinar Adenoma/carcinoma	0	0	1	0	0	0	0

*P<0.05, Note asterisk for controls refers to trend test.

Other organs: Non-neoplastic effects

- Thymic atrophyThyroid follicular cell hypertrophy
- Adrenal gland atrophy and cytoplasmic vacuolation
 Cardiomyopathy

- NephropathySpleen lymphoid follicular atrophy
- Arterial chronic active inflammation

- Masal Cavity
 Nasal Cavity
 Respiratory epithelium hyperplasia
 Olfactory epithelium metaplasia
 Forestomach squamous hyperplasia
- Lymph node hemorrhage (several sites)

Conclusions- PCB126:PCB118

- Clear evidence of carcinogenicity
- Based on
 - Cholangiocarcinoma of the liver
 - Hepatocellular neoplasms of the liver
 - Predominantly hepatocellular adenoma of the liver
 - Hepatocellular carcinoma of the liver
 - Cystic keratinizing epithelioma of the lung
- Also considered to be related to treatment
 - Gingival squamous cell carcinoma of the oral mucosa
- May have been related to treatment
 - Cholangioma of the liver
 - Hepatocholangioma of the liver